R Packages
Basic utilities
Package | Description | By |
---|---|---|
dplyr |
A grammar of data manipulation | tidyverse |
tidyr |
Tidy data with spread and gather functions | tidyverse |
purrr |
A functional programming toolkit | tidyverse |
plyr |
llply() and ldply() as for-loop replacements |
Hadley Wickham |
tibble |
Modern reimagining of the data.frame |
tidyverse |
data.table |
Alternative data frame. Quicker for big datasets | Tyson Barrett |
recipes |
Preprocessing pipelines | tidyverse |
groupdata2 |
Create groups, folds and partitions | Ludvig Olsen |
rearrr |
Transform and rearrrange data | Ludvig Olsen |
Text manipulation
Modeling
Package | Description | By |
---|---|---|
lme4 |
Linear mixed-effects models | Douglas Bates, et al. |
brms |
Bayesian modeling | Paul-Christian Bürkner |
cvms |
Evaluation and cross-validation of models | Ludvig Olsen |
parsnip |
Tidy, unified interface to model functions | tidymodels |
superlearner |
Ensemble methods | Eric Polley, et al. |
keras |
Deep learning framework | Daniel Falbel, et al. |
tensorflow |
Deep learning framework | Daniel Falbel, et al. |
mlr3 |
Object-oriented machine learning framework | Michel Lang, et al. |
e1071 |
Different model functions | David Meyer, et al. |
performance |
Evaluating performance of models | easystats |
yardstick |
Evaluation metrics | tidymodels |
insight |
Extract model attributes | easystats |
MuMIn |
Model object metrics | Kamil Bartoń |
Visualization
R development
Python Packages
Basic utilities
Modeling
Package | Description | By |
---|---|---|
scikit-learn (sklearn ) |
Everything in machine learning | Pedregosa, F., et al. |
tensorflow |
Deep learning framework | Martín Abadi, et al. |
pytorch |
Deep learning framework | Adam Paszke, et al. |
jax |
High-performance machine learning research | James Bradbury, et al. |
PyStan |
Bayesian inference (stan interface) | PyStan |
PyMC3 |
Bayesian statistical modeling and Probabilistic Machine Learning | Salvatier J., et al. |
Neuro
Package | Description | By |
---|---|---|
mne |
M/EEG analysis and visualization | Alexandre Gramfort, et al. |
nipy |
Neuroimaging tools | NiPy |
nitime |
Timeseries analysis for neuroscience data | NiPy |
nilearn |
scikit-learn for neuroimaging data | NiPy |
nibabel |
Read / write common neuroimaging file formats | NiPy |
nilearn |
Workflows and interfaces for neuroimaging packages | NiPy |
PySurfer |
Neuroimaging visualization | NiPy |
PyMVPA |
Multivariate pattern analysis | Michael Hanke, et al. |
fMRIPrep |
Robust Preprocessing Pipeline for fMRI Data | Oscar Esteban, et al. |
NLP
Package | Description | By |
---|---|---|
nlpaug |
Text and audio augmentation | Edward Ma |